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The stress tensor in a granular shear flow is calculated by supposing that binary 
collisions between the particles comprising the granular mass are responsible for most 
of the momentum transport. We assume that the particles are smooth, hard, elastic 
spheres and express the stress as an integral containing probability distribution 
functions for the velocities of the particles and for their spatial arrangement. By 
assuming that the single-particle velocity distribution function is Maxwellian and 
that the spatial pair distribution function is given by a formula due to Carnahan & 
Starling, we reduce this integral to one depending upon a single non-dimensional 
parameter R: the ratio of the characteristic mean shear velocity to the root mean 
square of the precollisional particle-velocity perturbation. The integral is evaluated 
asymptotically for R $ 1 and R < 1 and numerically for intermediate values. Good 
agreement is found between the stresses measured in experiments on dry granular 
materials and the theoretical predictions when R is given the value 1 . 7 .  This case is 
probably the one for which the present analysis is most appropriate. For moderate 
and large values of R, the theory predicts both shear and normal stresses that are 
proportional to the square of the particle diameter and the square of the shear rate, 
and depend strongly on the solids volume fraction. A provisional comparison is made 
between the stresses predicted in the limit R -+ 00 and the experimental results of 
Bagnold for shear flow of neutrally buoyant wax spheres suspended in water. The 
predicted stresses are of the correct order of magnitude and yield the proper variation 
of stress with concentration. When R < 1, the shear stress is linear in the shear rate, 
and the analysis can be applied to shear flow in a fluidized bed, although such an 
application is not developed further here. 

1. Introduction 
There have been few investigations of the rheological properties of dense concentra- 

tions of large particles immersed in fluids for cases in which inertia effects are dominant. 
The relative rarity of these investigations is probably due more to the difficulties 
there are in performing experiments and the lack of any obvious theoretical approach 
than to any lack of importance. I n  fact, an understanding of such flows could be of 
great benefit in connection with numerous practical applications involving, for ex- 
ample, slurry pipelines, sediment transport, pneumatic transport, materials handling 
equipment, and fluidized beds. Of the work that has been done on the rheology of 



256 X. B. Savage and D. J .  Jeflrey 

concentrated suspensions of particles (for example, see reviews by Goldsmith & Mason 
1967; Batchelor 1976; Jeffrey & Acrivos 1976; Gadala-Maria 1979) most have dealt 
with small particles a t  low Reynolds numbers. With reference to larger particles, 
Cheng & Richmond (1978) have discussed some of the phenomena that can arise in 
flows of dense solid-liquid mixtures, such as yield stresses, slip-stick behaviour, normal 
stress effects, discontinuous changes in stresses, wall effects, and liquefaction. Because 
of the similarities to the behaviour of dry particulate materials, they have termed 
these flows ‘granulo-viscous’. 

The most extensive and consistent experiments on the rheology of granular flows 
yet performed appear to be those of Bagnold (1954). Neutrally buoyant spherical 
particles suspended in Newtonian fluids (water and a glycerine-water-alcohol mixture) 
were sheared in the annular region between a stationary inner cylinder and a concentric 
rotating outer cylinder. Both the torque and the normal stress in the radial direction 
were measured as functions of the shear rate for various values of mean solids con- 
centration. Bagnold distinguished two limiting types of behaviour. In  the so-called 
macro-viscous region (corresponding to low shear rates), which is dominated by fluid 
viscosity, the shear and the normal stress are linearly proportional to the shear rate. 
Bagnold attributed the presence of the normal stress in the radial direction to an 
anisotropy in the spatial particle distribution. In  the grain-inertia region, which is 
the main concern of the present paper, the fluid in the interstices plays a minor role 
and the dominant effects arise from particle-particle interactions. Bagnold argued 
that the main mechanism for momentum transfer is the succession of glancing colli- 
sions as the grains of one layer overtake those of the adjacent slower layer. Both the 
change in momentum during a single collision and the rate at  which collisions occur 
are proportional to the relative velocity of the two layers. Thus, both the shear and 
normal stresses in this region vary as the square of the shear rate. Bagnold’s experi- 
ments at  higher shear rates clearly showed this kind of dependence. Bagnold also 
found that the stresses increased strongly with solids concentration, particularly 
at the higher concentrations approaching the maximum possible solids volume 
fraction. 

While there have been some proposals for constitutive equations which are based 
wholly or in part upon a continuum mechanics approach and make use of Bagnold’s 
experimental data (Jenkins & Cowin 1979; Kanatani 1979; McTigue 1979; Savage 
1979), only McTigue (1978) has attempted to analyse the collisional dynamics of the 
microstructure and improve upon Bagnold’s simple flow model of the grain inertia 
region. His approach follows Marble’s ( 1964) suggestive analysis of particle collisions 
in a one-dimensional flow of a gas containing solid particles of two different sizes and 
SOO’S (1967) closely related analysis of stresses due to collisions in a particle cloud 
subjected to shear. McTigue’s model is highly simplified in that he ignores particle 
fluctuations, constrains the particles to translate with the mean motion and neglects 
higher-order effects of concentration upon collision frequency. Although he shows 
that the stresses depend upon the square of the shear rate, the predicted stresses are 
between one and two orders of magnitude lower than Bagnold’s measurements and 
the dependence of the stress upon the solids concentration is poorly represented. 

In the present paper we examine the bulk stresses developed when a dispersion of 
hard elastic spherical particles is subjected to a bulk deforming motion. The effects 
of the interstitial fluid upon the generation of the bulk stresses will be negIected. This 
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I shear flow 

FIGURE 1. Granular shear flow. 

seems physically plausible if the interstitial fluid is agas but less obviousif, for example, 
the fluid is a liquid of the same density as the solid particles. Bagnold (1954) reasoned 
that, in flow regimes where grain inertia is dominant, the motion of the liquid displaced 
by the particle fluctuations is random and thus is unlikely to give rise to any net 
contribution to the stresses. However, his argument is not overly convincing to us. 
Thus, we caution against the indiscriminate application of the present analysis to  
cases in which the particle and fluid densities are similar. 

There remain three primary mechanisms by which the bulk stresses can be generated; 
they are (i) dry friction, (ii) transport of momentum by particle translation, and (iii) 
momentum transport by particle interactions. Although all three can co-exist in 
certain flow regimes, usually one of them will play a predominant role. At high solids 
concentration and low shear rates, the particles are in close rubbing contact, grain 
inertia effects are small and the stresses are of the quasi-static, rate-independent, 
Coulomb type described in the soil mechanics literature (Schofield & Wroth 1968) 
dealing with dry cohesionless granular materials like sand. At very low concentrations 
and high shear rates, we might expect the granular material to behave like a dilute 
gas. The mean free path is large compared with the particle diameter, and the shear 
stress, for example, results from the interchange of particles between adjacent layers 
of ‘fluid’ moving a t  different velocities. When both the concentration and the shear 
rate are moderately high, the situation is analogous to a simple liquid where the 
exchange of momentum occurs primarily by the continuous action of intermolecular 
forces (Temperley, Rowlinson & Rushbrooke 1968; Faber 1972; Hansen & McDonald 
1976). The granular flow mechanics bear similarities to the ‘ hard-sphere models’ used 
in the statistical-mechanical theories of the liquid state where the intermolecular forces 
are impulsive forces associated with particle collisions, 

The latter flow regime is the main concern of this paper. Since the solids concentra- 
tion is not low, only rarely will there form vacancies of sufficient size to permit particle 
transport between adjacent shear layers. On the other hand, we consider high enough 
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shear rates and moderately high concentrations so that the majority of particle inter- 
actions are collisions over very short time intervals and dry frictional rubbing contacts 
are relatively infrequent. 

2. General integral form for the stress tensor 
We consider a dispersion of identical, hard, elastic, spherical particles of diameter cr 

subjected to a mean shearing motion u = u(y) e, where e, is the unit vector in the 
x-direction (figure 1). Because of interparticle collisions, the instantaneous particle 
velocity ci(ri, t )  differs from the mean translational velocity u(y) by a random fluc- 
tuating component. Since we are considering hard spheres such that the collisions are 
almost instantaneous, the probability of many-body collisions is assumed negligible, 
so we need treat only binary collisions. The assumption no doubt seriously breaks down 
a t  very high concentrations, say solid fractions v 7 0-5, when it becomes likely that 
groups of particles intermittently, a t  least, lock together and prolonged sliding con- 
tacts occur. In  order to calculate the collisional transport of momentum and hence 
determine the stress tensor, we require a description of the precollisional correlation 
of particle positions and velocities. Let us first consider the spatial particle distributions. 

2.1. ConJigurationul and collisional distribution functions 

We shall define an L-particle conjgurational distribution function dL)(rl, r2, . . . , rL) )  
such that dL)(r1, r2, . . . , rL) Sr, . . . Sr, is the probability of finding a particle in each 
of the volume elements Sr,, Sr,, . .., Sr, centred on r,, r2, . . ., rl, (where L = 1 , 2 , 3 ,  ...). 
The one-particle distribution function dl)(r)  is just the number density n of particles 
at r. For a homogeneous bulk it has a uniform value 

dl)(r) = N / V  = n, (2.1) 

where N is the mean number of particles in the volume V .  
I n  an amorphous mass of particles there is only a short-range order and there is 

no correlation between particles that  are far apart. Thus the joint probability of finding 
particles a t  rl and r,  when rl and r2 are far apart is the product of the individual 
probabilities, that is, 

d2)(rl,r2) N n(l)(r1)n(l)(r2) = n2 for lr2-rl\ B CT. (2.2) 

(2.3) 

It is convenient to define a configurational pair-correlation function 

so that 
gP-1, r2) = n(2)(r1, r2)/n2, 

g(rl,r2) -+ i as lr2-rll + co. 

I n  structural studies of the liquid state, g(rl,r2) is of great importance for the 
determination of the thermodynamic properties; an extensive literature concerned 
both with its experimental measurement and its theoretical prediction now exists 
(see reviews in Temperley et al. 1968; Henderson 1971; Reed & Gubbins 1973; Croxton 
1974; Hansen & McDonald 1976; Ziman 1979). I n  dense fluids a t  equilibrium (no 
mean deformation) there is spatial homogeneity and q(r,, r2) depends only upon the 
separation distance r = Ir, - r,l. Then g = g,(r) is termed the radial distribution func- 
tion; it can be interpreted as the ratio of the local number density a t  a distance r from 
the central particle to the bulk number density. The simplest intermolecular potential 
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energy function that can be used to determine the thermodynamic properties is the 
hard-sphere model. The radial distribution function for this structural model has been 
theoretically determined both by analytical approaches (Thiele 1963; Wertheim 1963; 
Lebowitz 1964; Baxter 1968, 1971) as well as by numerical methods (Alder & Hoover 
1968; Wood 1968; Baxter 1971; Ree 1971) involving Monte Carlo methods and mol- 
ecular dynamic calculations. 

Carnahan & Starling (1969) proposed a semi-empirical equation of state from which 
they obtained the radial distribution function a t  contact ( r  = g )  for single-component, 
and mixtures (Mansoori et al. 1971) of, hard-sphere fluids. For a system of identical 
spheres, it can be written in terms of the solids fraction u as 

Their expression is in almost exact agreement with the ‘exact’ numerical molecular 
dynamics calculations for values of Y up to  about 0.5. But above this it gives values of 
go(a; u )  that are ton low. 

If the bulk of particles is subjected to a mean shear flow, the radial distribution 
function, which is spherical in equilibrium, becomes distorted into an ellipsoidal 
distribution whose principal axes are determined by the mean deformation field. For 
the usual dense gases or liquids, the mean shear is small and causes only a small per- 
turbation to the equilibrium radial distribution function. Born & Green (1947)’ 
Kirkwood, Buff & Green (1949) and Green (1969) have discussed such perturbations 
but their analyses are of limited interest to the present granular-flow problems. Green 
gave the form of the perturbation but not quantitative values, whereas the analysis 
of Kirkwood, Buff & Green involved the Brownian motion friction coefficient for which 
there is no counterpart in the granular-flow situation. Moreover, for the present 
problems, the mean shear is not always small. Let us define a velocity scale associated 
with the mean shear, say gduldy .  While this is very small compared with the root- 
mean-square fluctuation velocity in the context of the molecular description of dense 
fluids, in the case of granular flows the two velocities can be of the same order. 

I n  the present analysis we shall determine the anisotropy in the collisional pair 
distribution function by making use of a kinematic argument. It should be noted that 
the overall theory will be applied to the analysis of two somewhat different kinds of 
flows: a pure granular shear flow and the shear flow of a fluidized bed. I n  the granular 
shear flow the magnitude of the particle velocity fluctuations is linked directly to the 
strength of the shear flow, whereas in the fluidized bed the particle velocity fluctuations 
are affected by the mean shear, but are generated primarily by the fluidizing Auid 
(for the case of small shear). 

Let us assume that the single particle velocity distribution functionf(l)(c, r) (defined 
such that f(l)(c,r)& is the differential number of particles per unit volume with 
velocities within the range c and c + 6 ~ )  is Maxwellian about the local mean transport 
velocity. The experiments of Carlos & Richardson (1968) show that there is some 
justification for this assumption, a t  least for the case of fluidized beds. If we consider 
a sphere moving instantaneously with the mean transport velocity, then, because of 
the mean shear, this sphere is more likely to experience collisions from other particles 
on its surface corresponding to the two ‘upstream ’ quadrants (figure 2). We shall now 
put this intuitive notion into more quantitative terms. 
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‘Upstream’ quadrants 

d 

Sphere A 

FIGURE 2. Anisotropy in collisional pair distribution function arising from mean shear. Sphere 
A is instantaneously moving with the mean transport velocity, and the shaded ‘upstream ’ 
quadrants receive more collisions than the downstream ones. 

A complete pair distribution functionf(2)(c,, r,, c,, r,, t) is defined such that 

f@)(c,, r,, c,, r,, t )  Sc,~c,~r ,Sr ,  (2-5) 

is the probability of finding a pair of particles in the volume elements Sr,, Sr, centred 
on the points r,, r2 and having velocities within the ranges C, and c1 + &c,, and c,  and 
c, + Sc,. We now assume that the complete pair distribution function can be expressed 
as the product of the spatial pair distribution function and the two single particle 
velocity distribution functions, thus 

where 
n(2)/n2 = g(rl, r,, t ) .  

If we integratefc,) over all possible values of the velocities for particles 1 and 2, then 

Jf(z)dc,dc, = n(2). (2.8) 

Consider two spheres in contact a t  r as shown in figure 3 such that rl = r - &rk and 
r, = r + @k, where k is the unit vector along the line of centres a t  collision and the 
spheres’ relative velocity q = c, - c,. I n  the equ.ilibrium situation ( f(,) = fh”) a t  contact, 
equation (2.8) can be written as 

n 

While the first integral of (2.9) is taken over all possible values of c, and c,, the last 
integral is taken only over values of C, and C, such that q . k > 0 (this latter condition 
picks out particles that are just about to collide; q . k < 0 corresponds to those that 
have just collided). For the non-equilibrium case (with steady mean shear flow u(y)) 
a t  contact, we take 

(2.10) 
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0 

FIGURE 3. Geometry of a collision of two spheres. 

We have assumed in (2.10) that the spatial pair distribution function is the same as 
the spherically symmetric equilibrium radial distribution function go(g; v) at  contact. 
However, because of the presence of the mean shear u, the collisional pair distribution 
function g(r,, r,) is different from go(g; v). I n  other words, if we were to take a snapshot 
of the flow, the distribution of particles might appear to be isotropic but the distribution 
of coElisions could be anisotropic in the case in which there was a mean shear. 

Thus from (2.10) 

and by making use of Carnahan & Starling's expression (2.4) for the radial distribution 
function g o ( q  v), g(rl, r2) may then be explicitly determined. 

Assuming the single particle velocity distribution functions are Maxwellian,? for 
example, 

f(l)(cl, r,; u(rl)) = n(n3-3 exp { - (c, - u(r,))2//.">, (2.12) 

where is the mean square of the precollision particle velocity perturbation. After 
substituting expressions for the velocity distribution functions like (2.12) into (2.11) 
and transforming the variables from c,, cg to Q, q, where Q is the velocity of the centre 
of mass of the two particles and q is the relative velocity c, - c,, (2.11) may be integrated 
to yield 

g(r17 r2) = go(g; v, erfc (2k. u(r2)/(22)')7 (2.13) 

where erfc (x) is the complementary error function 

(2.14) 

The product of k . u(r,) may be expressed in terms of the spherical co-ordinates 0 and 
$ (figure 4) as 

k . u(r,) = - $cjdu/dyj cos $ cos 0sin 0. (2.15) 

Figure 5 shows the variation of g(rl, r2)/go(g; v) with 0 for various values of 2-iR cos $, 
where 

R = cr Idu/dy/ /?* (2.16) 

is the ratio of mean shear characteristic velocity to the r.m.s. precollision velocity 

f In  reality the velocity fluctuations are likely to be anisotropic and the distribution function 
may depart from the exponential form. Nevertheless, departures from a Maxwellian distribution 
are expected to produce only minor changes in the numerical coefficients associated with the 
components of the stress tensor, leaving the functional form of the final expressions for these 
components unchanged. 
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FIGURE 4. Definition of co-ordinate system. 
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FIGURE 5. Collisional pair distribution function. 

perturbation. For small values of R, g(r,,r,) is ellipsoidal, whereas for large R the 
variations in g(rl, r2) are step-like. 

2.2.  Collisional transfer of momentum 

To obtain the integral expression for the stress tensor, we follow a treatment similar 
to Enskog's analysis of the collisional transfer of molecular properties in a dense gas, 
as described by Chapman & Cowling (1970). Consider two particles colliding a t  the 
point r as shown in figure 3; v2Sk is the surface element on a sphere of radius cr and 
centre 0, on which 0, must lie at collision. In  time 6t prior to the collision, 0, moved 
through a distance q6t relative to 0,. For a collision to occur within 6t then, 0, must 
lie inside the volume v26k(q. k) 6t. To determine the stress tensor, we must consider 
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the collisional transfer of momentum across the area element SS whose unit normal 
is n (figure 3). If the line of centres a t  collision, which is of length a, is to cut SS, then 
0, must lie within the volume a(k . n) 68, where k . n is drawn as positive in figure 3. 
Thus, the probable number of collisions per unit time in which c,, C, and k lie within 
the ranges SC,, k,, Sk is 

g(r,, r,)j(l)(c,, r,; u(r,))f(l)(c,, r,; u(r,)) a2Sk(q. k) a(k .  n)SSSc,Sc,. (2.17) 

Each collision causes a particle on the positive side of SS to gain momentum m(c; - c,) 
at the expense of one on the negative side (where ch is the velocity of particle 2 after the 
collision). The total rate of transfer of momentum across SS per unit time and area 
for this type of collision is thus 

n 

mc3J (ch-c2)g(rl, r2)j(1)(c1, r l ; ~ ( r l ~ ~ j ~ ~ ~ ~ c , ,  r2;u(r2)) (q.k) (k.n)dkdc1dc2, (2.18) 

integrated over all values such that q , k > 0 and k . n > 0. If we interchange the 
role of the colliding particles, i.e. k -+ -k, q + - q, (ch-c,) -+ (c;- c,) = - (c;- c,), 
then we obtain the same integral as (2.18) but now integrated over all values such that 
q . k > 0 and k . n < 0. Thus, the total rate of momentum transfer per unit time and 
area may be written as 4 of the integral expressed by (2.17), but integrated over all 
values such that q . k > 0. This expression is the scalar product of n and another vector 
which represents the vector momentum flux. If we consider the dynamics of a collision, 
i t  can be shown (Chapman & Cowling 1970) that  ci - c, = (q . k) k. The stress tensor 
arising from interparticle collisions may thus be written as 

where kk is a dyadic product and the integral is taken over all values such that q . k > 0. 
Again assuming the single-particle velocity distribution function to be Maxwellian as 
in (2.12) and transferring to the variables Q, the centre of mass velocity, and q, several 
of the integrations in (2.19) can be performed to yield 

T = - grnc3n2 (277$)-* 

x s  q.k>O kkg(r , ,r , ) (q .k)2exp(g(q .k+2k.u(r , ) )2  dkd(q.k). (2.20) 

From figure 4 it may be seen that 

k = cos 8 cos $e, + sin 8e,  + cos 8 sin $en, (2.21a) 

u(r2) = -- - sin8e,, and dk = cosBdBdq5. (2.21 b, c) 

Thus by making use of equations (2.13), (2.16) and (2.21) and integrating with 
a l d u l  2 dY 

respect to q .  k, we may write (2.20) as 

T = - $me3n,2v2g,(c; v) kk erfc ( - 2-JR cos q5 sin 8 cos 8) 

c 

x (2/7r)fr R cos $ sin 8 cos Bexp ( - &R2cos2 $ sin2 8 cos2 8 )  I 
+ (1 + R2 cos2q5 sin2 0 cos2 8) erfc cos 8d8d$. (2.22) 
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3. Solutions for the components of the stress tensor 
Although we have mentioned the precollision velocity fluctuation & and the mean 

shear to fluctuation velocity ratio R = uldu/dy]/&, little has been said about how 
their magnitudes are established. Physically, we can describe the process as follows. 
Consider a mass of granular material composed of rough, inelastic particles contained 
between two horizontal, rough, parallel, stationary plates. Suppose that the upper 
plate is set into motion parallel to its own plane so as to generate a constant shear rate 
du/dy within the granular material. The velocity fluctuations will increase in magni- 
tude until the energy dissipation in the interior of the granular mass is equal to the 
mechanical work expended in moving the upper plate. Part of the ‘quasi-thermal’ 
energy associated with the particle fluctuations is turned into thermal energy during 
the inelastic collisions and frictiona.1 rubbing between particles. The heat so generated 
will be carried away by convection of the interstitial fluid and by conduction. In  this 
way the final equilibrium, steady-state flow will be reached. Thus R will take on 
different values depending upon the properties of the solid particles such as their 
coefficient of restitution and the surface frictional properties. For a granular flow of 
nearly elastic solid particles with an interstitial fluid of negligible density, it seems 
reasonable to expect R to be about 1.  

The preceding analysis to derive the stress tensor ( 2 . 2 2 )  has assumed smooth, 
perfectly elastic granules. The model contains no mechanism to permit dissipation 
and thus there is no way of using the present analysis directly to calculate R. To 
proceed, we shall simply regard R as a parameter and compute the components of 
the stress tensor over the complete range 0 < R < a. The resulting stresses will then 
be compared with experiments for ranges of R that seem appropriate for each 
situation. 

In  general, the evaluation of ( 2 . 2 2 )  for T requires numerical integration. However, 
for small and large values of R, one may obtain simple asymptotic solutions which 
have straightforward physical interpretations. 

3.1. Solution for small R 
I n  addition to providing the asymptotic behaviour for the numerical solutions to be 
discussed later in this section, the small R solution has a specific physical interpre- 
tation. The limit R -+ 0 is equivalent to the case in which the mean shear characteristic 
velocity alduldyl tends to zero with the fluctuation velocity (p)& fixed, and this 
must correspond to a situation in which the two velocities are not directly related. 
A fluidized bed subjected to ti small shear is an obvious example. Carlos & Richardson 
(1968) measured the velocity fluctuations in fluidized beds having essentially no mean 
motion and found the magnitude of 2 to be a function of the fluidizing velocity. 
Thus the small R solution may be applied to the prediction of the effective viscosity 
of fluidized beds. 

Expanding the integrand of ( 2 . 2 2 )  for small R and integrating term-by-term yields 
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where ps = nrn is the mass density of the solid particles and the solids fraction 
v = 97rng3. 

The first term is an isotropic pressure arising from the velocity fluctuations asso- 
ciated with the interparticle collisions; there is no dependence upon shear rate. The 
second term, which depends linearly upon the shear rate, contains only two stress 
components, T,, = T,,. “on-Newtonian’ effects appear in the third, O(R2) term 
where the stresses depend upon the square of the shear rate. 

From this analysis the effective viscosity for a fluidized bed, at low shear rates, is 

However, we shall leave a detailed discussion of this prediction to a later paper. 

3.2. Large R solution 

We now consider the solution as R -+ co, with the precollision perturbation velocity 
v2* vanishing while the shear rat.e du/dy is fixed. We examine this limit not merely 
for a verification of the numerical integrations ( 9  3.3), but also because it may have 
relevance to granular systems which possess considerable internal damping. Such 
damping might arise in the case of a shear flow in which the interstitial fluid is a dense 
viscous liquid. Immediately after each collision the particles involved may have 
velocities different from the mean velocity but because of the high density and vis- 
cosity of the interstitial fluid the particle velocities quickly regress towards the mean 
value prior to the next collision. Thus the precollision perturbation velocity 24 
tends toward zero and R is very large. It should be noted that in this limit 3* is not 
related or analogous to the Reynolds’ stresses or the intensity of a turbulent flow of 
a continuum. The Reynolds’ stresses are obtained from a temporal average whereas 
vZt for the granular flow is defined by an ensemble average of grain velocitiesjust prior 
to collision. When the turbulent fluctuation-velocities in a continuum are zero, then 
the Reynolds’ stresses and the turbulent momentum transfer is zero. However, because 
of the finite particle size in a granular shear flow, collisions can occur and momentum 
can still be transferred even when the precollisional perturbation velocity 7’ is zero. 

For R --f 03, the complementary error functions in the integrand of (2.22) obey 

- 

- 

2 for (cos$sinOcosO) > 0 
0 for (cos $sin 8 cos 8) < 0 (3.3) erfc [ - 2-*R cos $ sin 0 cos O] -+ 

and hence the integrations in (2.20) need only be carried out over the upstream faces 
of the collision sphere, i.e. over 0 < 6’ 6 471 for -4. 6 $ < 47r and over -Q7r  < 0 < 0 
for &I- < 4 s 47r. For large R, (2.20) may be integrated by the method of steepest 
descent to yield 

( 3Zs (3.4) 
6 

T = - - vgO(a; v) ps v- kk(cos $ sin 8 cos 8)2 cos 0 d8 d$. 
?r 

Further integration for each stress component over the upstream faces of the collision 
sphere yields 
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Reversing the direction of the shear flow and repeating the calculation will leave 
the normal stresses unchanged, but will reverse the sign of the shear stresses. The stress 
tensor should therefore be written as 

32 

To first order, we obtain both shear and normal stresses proportional to the square 
of both particle diameter and shear rate. The normal stresses are unequal: 

T,, = T,, = 3T,. 

The ratio of shear to normal stress, lTzu/Tu,l = 8/3n = tan 40.3". 
It is interesting to compare these results with Bagnold's (1954) measurements of 

shear and normal stresses developed when neutrally buoyant wax spheres suspended 
in water were sheared in a coaxial-cylinder Couette flow apparatus. Since the analysis 
has neglected the interstitial fluid, and thus the explicit effects of the fluid on the 
collision dynamics as well as the fluid contributions to the momentum flux, we should 
not necessarily expect a close correspondence between the theory and the experi- 
ments. The neglect of the momentum flux due to the fluid will underestimate the 
stresses but the absence of the interstitial fluid will cause the solid-to-solid collisional 
momentum transfer to be overestimated. The two errors tend to cancel each other and 
thus the theory as R -+ co may be more accurate than one might initially expect. 
With these thoughts in mind, we have made a tentative comparison in figure 6 of the 
stresses obtained from (3.6) with those measured by Bagnold (1954). We have treated 
Bagnold's data by first non-dimensionalizing his stresses by dividing them by 
p,(adu/dy)2,  then plotting the non-dimensional stresses for a given solids fraction v 
against (du/dy)-*, and finally extrapolating the curve through these results to intersect 
the stress axis a t  (du/dy)-l  = 0. The data points attributed to Bagnold on figure 6 
correspond to the intercept values. Note that, if we had plotted Bagnold's raw data, 
the agreement between his experiments and (3.6), in fact, would be slightly closer. 
By treating his data as described, we should obtain values conforming to the grain- 
ineytia region, and presumably more appropriate for comparison with the theory. 

Although the predicted shear stress T,, is too high and the predicted normal stress 
T,, is too low (figure 6), both stresses are of the right order of magnitude and their 
variations with concentration v are correct, a t  least up to concentrations of about 0.5. 
For v 7 0.5 the experimental stresses increase much more rapidly with v than do those 
predicted by (3.6). Recall that, to calculate the stresses, we have used (2.4) which 
underestimates go(g; v) for v 7 0.5. 

There is also the possibility that, in the experiments a t  the higher concentrations, 
groups of particles locked together and that the actual shear took place over a gap 
narrower than the annular gap between the cylindrical walls of the apparatus. A crude 
way to estimate the result of such lockings is first to imagine that the total gap h is 
divided into two regions of constant concentration (figure 7),  a locked region where 
the solids fraction is vL and a shear region of width 6 where solids fraction is the 
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FIGURE 6. Comparison of stresses predicted for R + 1 with experimental measurements of 
Bagnold (1954). ---, present theory for R & 1 (equation (3.6)) ; 0 and 0, Bagnold's data for 
normal and shear stresses respectively. 

maximum value vMs at which continued shear can occur. Take one wall of the shear 
apparatus to be stationary and the other moving with velocity U.  The mean concen- 
tration i; (which is all that Bagnold could measure in his experiment) can be expressed 
as 

We can then express 
shear rate (duldy), = 

(3.7) 
- v = V M S ( d / / h ) + V L ( 1 - d / h ) .  

the real shear rate (duldy), = U / S  in terms of the apparent 
U / h  by using (3.7) : 
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Thus for mean solids fractions 9 greater than uMs, the stress tensor for a given apparent 
shear rate may be determined from equation (3.6) applied a t  v = vMs and 

dU/dY = (dU/dY),, 
i.e. 

We take vL to be about 0.64, corresponding to a random dense packing, and v,, 
to be 0.5, which is a little less than the value of 0.52 for a simple cubic packing of 
spheres (this comparison gives a physical feeling for the magnitude of vMS but it is 
not meant to imply that the spheres are actually moving in a regular array). Then 
(3.9) predicts rates of increase of the stresses which are close to Bagnold’s measure- 
ments. 

Finally, it should be emphasized that the locking model is a crude and tentative 
one. At moderate concentrations, the particle locking may occur, not in the definite 
bands as shown in figure 7, but in clusters or groups of particles which may form and 
break up intermittently over the full gap between the viscometer walls. 

3.3. General solution for  arbitrary R 
For the general case of arbitrary values of R, integration of (2.22) must be performed 
numerically. This was done using the standard subroutine DBlDAF from the NAG 
Fortran Library. A little care had to be exercised in its use because the integrand 
contained narrow peaks, often on the boundaries of the range of integrations; never- 
theless, results correct to three significant figures were easily obtained. 

The results of numerical integrations together with the asymptotes for small and 
large R are shown in figure 8 in the form of nondimensional stress components 

versus R. The normal stress pxz equals pug, not only in the two asymptotic solutions, 
but over the full range of R. From the previous asymptotic analyses it was found 
that all the non-dimensional stress components qi approach constant values for 
large R. For small R, the non-dimensional normal stresses vary as R-2 and the shear 
stress p&, as R-I. Note that the ratio of shear to normal stress lTxy/Tuu\ -+ 8/3n as 
R + co, decreases with decreasing R, and approaches zero as R -+ 0. 

Savage & Sayed (1980) have performed experiments with dry granular materials 
where the interstitial fluid was air. Both shear and normal stresses were determined 
when various mean concentrations of granular material were sheared in an annular 
shear cell. These experiments are probably the most appropriate for comparison with 
the present analysis; results from them are shown in figure 9. In the experiments, it  
was assumed that the total stresses were the sum of two parts, (i) a dry friction part 
which was independent of the shear rate for a given concentration, plus (ii) a dynamic 
part which depended upon the square of the shear rate. Using least-square fits to the 
data points for a given concentration, it was possible to separate the total stress 
into these two parts. The data points shown in figure 9 correspond t o  the values of 
the dynamic part which were generally close to the total stresses. Results are shown 
for 1.0 mm diameter polystyrene spheres having a specific gravity of 1.095 and for 
1.8 mm diameter Ballotini spherical glass beads having a specific gravity of 2.97. The 
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non-dimensional stresses for the two materials are similar up to a concentration of 
about 0-48, where the polystyrene beads begin to show a much more rapid increase 
of stress with concentration. The rapid increase is very likely to be associated with 
particle locking as described in $3.2 ,  but it is not obvious why locking should occur 
a t  lower concentrations in the tests with polystyrene beads. The phenomenon may be 
related to differences in particle size distributions for the two materials used in the 
tests. 

The theoretical curves shown on figure 9 correspond to values of R = 1-7.  As 
mentioned previously, the present theoretical model cannot, as it stands, be used to 
determine the value of R; one is only guided by the intuitive feeling that R should be 
of order one for smooth, hard elastic particles like glass beads. Our choice of the value 
of the parameter R = 1.7 has been made to  yield theoretical stresses consistent with 
the cxperirnental values. Nevertheless, it  is seen that the predicted ratios of shear 
stress to normal stress lTzy/Tyyl are close to the experimental values and the glass 
beads, a t  least, show the proper variations of stresses with v over the small range of v 
covered in the tests. 

4. Concluding remarks 
A theory for the stresses developed during rapid shear of granular materials has 

been presented. The analysis was developed in terms of the parameter R, which is 
the ratio of the characteristic mean shear velocity to the particle fluctuation velocity. 
The analysis was applied to study three different physical situations, corresponding 
to different values of the parameter R; namely, (i) fluidized beads (R < l) ,  (ii) dry 
granular flows (R = O( I)), and (iii) Bagnold’s granulo-viscous flow (R 9 1). Since the 
analysis has neglected any effect of the interstitial fluid, the application of the analysis 
to this third situation is tentative and likely, to some degree, to be inappropriate. 
The level of agreement between the theory and experimental observations is en- 
couraging and suggests that further refinements of the present simple theory would 
be worth developing. 

The weak link in the present analysis is the inability to determine R. If we consider 
rough, inelastic particles having finite rotary inertia, it may be possible to determine 
R explicitly by establishing a balance between the input mechanical work and the 
energy dissipation in the sheared granular mass. This type of analysis could also 
determine the contribution to the total stress arising from rate-independent, Coulomb- 
type, dry frictional rubbing as well as the dynamic contribution described in the 
present paper. 

The present analysis has assumed that the particle velocity fluctuations are iso- 
tropic and that there is no correlation between individual particle velocities. The 
collisional pair distribution function has been determined by a simple kinematic 
argument. Refinement here may require a rather strong departure from the simple 
procedure followed in the present paper. 

It should be of interest to include, in a simple way, the momentum flux due to the 
interstitial fluid so that the analysis could be applied to cases in which the fluid and 
particle densities are of the same order. For the case of high concentrations a more 
sophisticated model for locking could be undertaken. 
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